DocumentCode :
735083
Title :
A boosting method for direct AUC optimization
Author :
Zhongliang Li ; Shaodan Zhai ; Tian Xia ; Shaojun Wang
Author_Institution :
Dept. of Comput. Sci. & Eng., Wright State Univ., Dayton, OH, USA
fYear :
2015
fDate :
12-15 July 2015
Firstpage :
797
Lastpage :
801
Abstract :
We present a boosting method for classification problems with optimal AUC value as a performance measure. The proposed technique first minimizes the empirical pairwise classification error. Once the pairwise classification error is reduced to a coordinatewise local minimum, then it switches to maximize the average pairwise margin of a small set of bottom sample pairs. Experimental results on real-world data sets show that the proposed non-convex optimization method achieves competitive or better results than the convex relaxation methods, and it is very robust in the noisy datasets.
Keywords :
concave programming; learning (artificial intelligence); minimisation; pattern classification; average pairwise margin maximization; boosting method; direct AUC optimization; empirical pairwise classification error minimization; nonconvex optimization method; optimal AUC value; Algorithm design and analysis; Boosting; Noise; Noise measurement; Support vector machines; Training; Training data;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Signal and Information Processing (ChinaSIP), 2015 IEEE China Summit and International Conference on
Conference_Location :
Chengdu
Type :
conf
DOI :
10.1109/ChinaSIP.2015.7230514
Filename :
7230514
Link To Document :
بازگشت