• DocumentCode
    735940
  • Title

    Polarimetric SAR images clustering with Gaussian mixtures model

  • Author

    Azmedroub, Boussad ; Ouarzeddine, Mounira

  • Author_Institution
    Dept. of Telecommun., Univ. of Sci. & Technol. Houari Boumediene, Algiers, Algeria
  • fYear
    2015
  • fDate
    25-27 May 2015
  • Firstpage
    1
  • Lastpage
    5
  • Abstract
    Polarimetric Synthetic Aperture Radar (PolSAR) images offer a possibility to detect the right target backscattering giving a better classification results. In this paper we are interested in polarimetric SAR image clustering by using model-based polarimetric decomposition of Freeman and Yamaguchi like feature vector with the Gaussian Mixture Model (GMM) unsupervised classifier. For the validation of our results we use the polarimetric SAR images of the oberpfaffenhofen site. The results obtained from real data are significant.
  • Keywords
    Gaussian processes; mixture models; radar imaging; radar polarimetry; synthetic aperture radar; Freeman like feature vector; Gaussian mixtures model; Yamaguchi like feature vector; model-based polarimetric decomposition; oberpfaffenhofen site; polarimetric SAR images clustering; polarimetric synthetic aperture radar; target backscattering; unsupervised classifier; Gaussian mixture model; Matrix decomposition; Rough surfaces; Scattering; Surface roughness; Synthetic aperture radar; Gaussian Mixture Model (GMM); Model-based polarimetric decompositions; PolSAR classification;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Control, Engineering & Information Technology (CEIT), 2015 3rd International Conference on
  • Conference_Location
    Tlemcen
  • Type

    conf

  • DOI
    10.1109/CEIT.2015.7233066
  • Filename
    7233066