Title :
Visualization of big data
Author_Institution :
Department of Electrical Engineering, Princeton University, NJ, USA
Abstract :
Big data has many divergent types of sources, from physical (sensor/IoT) to social and cyber (web) types, rendering it messy, imprecise, and incomplete. Due to its quantitative (volume and velocity) and qualitative (variety) challenges, big data to the users resembles something like “the elephant to the blind men”. It is imperative to enact a major paradigm shift in data mining and learning tools so that information from diversified sources must be integrated together to unravel information hidden in the massive and messy big data, so that, metaphorically speaking, it would let the blind men “see” the elephant. This talk will address yet another vital “V”-paradigm: “Visualization”. Visualization tools are meant to supplement (instead of replace) the domain expertise (e.g. a cardiologist) and provide a big picture to help users formulate critical questions and subsequently postulate heuristic and insightful answers.
Keywords :
Big data; complexity; data mining; dimensional reduction; learning; projection; tools; visualization;
Conference_Titel :
Cognitive Informatics & Cognitive Computing (ICCI*CC), 2015 IEEE 14th International Conference on
Conference_Location :
Beijing, China
Print_ISBN :
978-1-4673-7289-3
DOI :
10.1109/ICCI-CC.2015.7259428