Title :
Radio Map Prefetching for Indoor Navigation in Intermittently Connected Wi-Fi Networks
Author :
Konstantinidis, Andreas ; Nikolaides, George ; Chatzimilioudis, Georgios ; Evagorou, Giannis ; Zeinalipour-Yazti, Demetrios ; Chrysanthis, Panos K.
Abstract :
Wi-Fi (or WLAN) based indoor navigation applications for mobiles rely on cloud-based services (s) that take care of a user´s (u) localization task using structures called Radio Maps (RMs). It is imperative for u to have a stable WiFi connection in order to either continuously receive location updates from s or to download RMs a priori for offline navigation. Wi-Fi networks however, suffer from intermittent connectivity due to poor network planning that results in sparse deployment of access points and effectively areas where Wi-Fi coverage cannot be guaranteed. This inherently affects the localization accuracy and therefore the navigation experience of users. In this paper, we propose an innovative framework for accurate and fast indoor localization over an intermittently connected WiFi network, coined Prefetching Localization (PreLoc). In Preloc, we prioritize the download of RM records based on knowledge acquired from historic traces of other users inside the same building. Instead of downloading the complete RM from s to u, we propose a Probabilistic Group Selection (PGS) strategy, which identifies RM records that have a higher probability of being necessary to a user moving inside a target area. We have evaluated our framework using a real prototype developed in Android, as well as realistic Wi-Fi traces we collected at the University of Cyprus. Our experimental study reveals that PreLoc using PGS and conventional fingerprint-based indoor positioning algorithms can yield accuracy that is as good as using the same algorithms with a complete RM, even under scenarios of weak Wi-Fi coverage.
Keywords :
Accuracy; IEEE 802.11 Standard; Internet; Mobile communication; Navigation; Prefetching; Smart phones; Indoor Localization; Prefetching; Radiomaps;
Conference_Titel :
Mobile Data Management (MDM), 2015 16th IEEE International Conference on
Conference_Location :
Pittsburgh, PA, USA
Print_ISBN :
978-1-4799-9971-2
DOI :
10.1109/MDM.2015.45