DocumentCode :
737701
Title :
Gain-Scheduling Control of Teleoperation Systems Interacting With Soft Tissues
Author :
Cho, Jang Ho ; Son, Hyoung Il ; Lee, Dong Gun ; Bhattacharjee, Tapomayukh ; Lee, Doo Yong
Author_Institution :
Dept. of Autom. Control, Lund Univ., Lund, Sweden
Volume :
60
Issue :
3
fYear :
2013
fDate :
3/1/2013 12:00:00 AM
Firstpage :
946
Lastpage :
957
Abstract :
Surgical teleoperation systems are being increasingly deployed recently. There are, however, some unsolved issues such as nonlinear characteristics of the interaction between the slave robot and soft tissues and difficulty in employing force sensors in the surgical end-effectors of the slave. These issues make it difficult to generalize any approach to develop a control for the system. This paper addresses these issues by proposing a H suboptimal controller preserving robust stability and performance. The environment, i.e., soft tissues, is characterized with the nonlinear Hunt-Crossley model. This nonlinear characteristics of soft tissues are expressed with an affine combination of linear models within a predefined parameter polytope. For this linear parameter-varying system, a gain-scheduling control scheme is employed to design a suboptimal controller while guaranteeing its stability. To avoid using any force measurement in slave, we used position-position (PP) control architecture. The developed gain-scheduling control is validated with quantitative experimental results. The developed gain-scheduling PP control scheme shows good tracking capacity and high transparency for varied experimental conditions. Error of the transmitted impedance is significantly lower compared with other conventional control schemes for frequencies less than 2 Hz, which is frequently recommended for surgical teleoperation.
Keywords :
H control; biological tissues; medical robotics; scheduling; surgery; telemedicine; H-infinity suboptimal controller; affine linear model combination; force sensors; gain scheduling control scheme; linear parameter varying system; nonlinear Hunt-Crossley model; position-position control architecture; robust stability preservation; slave robo-soft tissue nonlinear interaction characteristics; slave robot surgical end effectors; surgical teleoperation systems; Biological tissues; Computational modeling; Control systems; Force; Force measurement; Phantoms; Robots; Gain-scheduling control; robotic surgery; teleoperation; transparency;
fLanguage :
English
Journal_Title :
Industrial Electronics, IEEE Transactions on
Publisher :
ieee
ISSN :
0278-0046
Type :
jour
DOI :
10.1109/TIE.2012.2189537
Filename :
6161639
Link To Document :
بازگشت