DocumentCode :
73776
Title :
Utilize Signal Traces from Others? A Crowdsourcing Perspective of Energy Saving in Cellular Data Communication
Author :
Zhonghong Ou ; Jiang Dong ; Shichao Dong ; Jun Wu ; Yla-Jaaski, Antti ; Pan Hui ; Ren Wang ; Min, Alexander W.
Author_Institution :
Dept. of Comput. Sci. & Eng., Aalto Univ., Espoo, Finland
Volume :
14
Issue :
1
fYear :
2015
fDate :
Jan. 1 2015
Firstpage :
194
Lastpage :
207
Abstract :
With the tremendous growth in wireless network deployment and increasing use of mobile devices, e.g., smartphones and tablets, improving energy efficiency in such devices, especially with communication driven workloads, is critical to providing a satisfactory user experience. Studies show that signal strength plays an important role on energy consumption of cellular data communications. While energy consumption can be minimized by accurately predicting signal strengths and reacting to it in real-time, the dynamic nature of wireless environments makes signal strengths highly unpredictable. In this paper, after analyzing in detail the signal strength variation and its impact on energy consumption, we propose to use crowdsourcing approach to optimize mobile devices´ energy efficiency by utilizing signal strength traces reported/shared by other users/devices in cellular networks. Via a comprehensive measurement study, we observe that signal strength traces collected from different devices are pseudo-identical, and they even exhibit similar threshold-based behaviors in the relationship between signal strength and device power consumption. Based on our observations, we propose a predictive scheduling algorithm that: (i) selects the right set of signal strength traces based on its location, (ii) applies a filter to smooth out signal strengths and hide abrupt changes, (iii) digitizes the signal strength to “good” and “bad” areas, and (iv) schedules transmissions based on power-throughput characteristics to optimize the transmission energy efficiency. To demonstrate the efficacy of the proposed algorithms, we prototype the crowdsourcing-based predicative scheduling algorithm on Android-based smartphones. Our experiment results from real-life driving tests demonstrate that, by leveraging others´ signal traces, mobile devices can save energy up to 35 percent compared to the conventional opportunistic scheduling, i.e., schedule transmissions o- ly based on instantaneous channel conditions.
Keywords :
cellular radio; data communication; energy conservation; power consumption; scheduling; smart phones; telecommunication power management; Android-based smartphones; cellular data communication; cellular networks; crowdsourcing perspective; energy consumption; energy efficiency; energy saving; mobile devices; opportunistic scheduling; power consumption; power-throughput characteristics; predictive scheduling; real-life driving tests; signal strength variation; signal strengths; signal traces; tablets; user experience; wireless environments; wireless network deployment; High definition video; Multiaccess communication; Power demand; Smart phones; Spread spectrum communication; Throughput; Energy consumption; network traffic scheduling; power control; prediction models; signal strength;
fLanguage :
English
Journal_Title :
Mobile Computing, IEEE Transactions on
Publisher :
ieee
ISSN :
1536-1233
Type :
jour
DOI :
10.1109/TMC.2014.2316517
Filename :
6786483
Link To Document :
بازگشت