DocumentCode :
737858
Title :
Rate Analysis of Two-Receiver MISO Broadcast Channel With Finite Rate Feedback: A Rate-Splitting Approach
Author :
Hao, Chenxi ; Wu, Yueping ; Clerckx, Bruno
Volume :
63
Issue :
9
fYear :
2015
Firstpage :
3232
Lastpage :
3246
Abstract :
To enhance the multiplexing gain of two-receiver Multiple-Input-Single-Output Broadcast Channel with imperfect channel state information at the transmitter (CSIT), a class of Rate-Splitting (RS) approaches has been proposed recently, which divides one receiver´s message into a common and a private part, and superposes the common message on top of Zero-Forcing precoded private messages. In this paper, with quantized CSIT, we study the ergodic sum rate of two schemes, namely RS-S and RS-ST, where the common message(s) are transmitted via a space and space-time design, respectively. Firstly, we upper-bound the sum rate loss incurred by each scheme relative to Zero-Forcing Beamforming (ZFBF) with perfect CSIT. Secondly, we show that, to maintain a constant sum rate loss, RS-S scheme enables a feedback overhead reduction over ZFBF with quantized CSIT. Such reduction scales logarithmically with the constant rate loss at high Signal-to-Noise-Ratio (SNR). We also find that, compared to RS-S scheme, RS-ST scheme offers a further feedback overhead reduction that scales with the discrepancy between the feedback overhead employed by the two receivers when there are alternating receiver-specific feedback qualities. Finally, simulation results show that both schemes offer a significant SNR gain over conventional single-user/multiuser mode switching when the feedback overhead is fixed.
Keywords :
Interference; Quantization (signal); Random variables; Receivers; Signal to noise ratio; Time division multiple access; Transmitters; MISO BC; ergodic sum rate; finite rate feedback; rate splitting;
fLanguage :
English
Journal_Title :
Communications, IEEE Transactions on
Publisher :
ieee
ISSN :
0090-6778
Type :
jour
DOI :
10.1109/TCOMM.2015.2453270
Filename :
7152864
Link To Document :
بازگشت