Title :
Bearing Fault Detection by a Novel Condition-Monitoring Scheme Based on Statistical-Time Features and Neural Networks
Author :
Prieto, M.D. ; Cirrincione, Giansalvo ; Espinosa, A.G. ; Ortega, J.A. ; Henao, Humberto
Author_Institution :
Dept. of Electron. Eng., Tech. Univ. of Catalonia (UPC), Terrassa, Spain
Abstract :
Bearing degradation is the most common source of faults in electrical machines. In this context, this work presents a novel monitoring scheme applied to diagnose bearing faults. Apart from detecting local defects, i.e., single-point ball and raceway faults, it takes also into account the detection of distributed defects, such as roughness. The development of diagnosis methodologies considering both kinds of bearing faults is, nowadays, subject of concern in fault diagnosis of electrical machines. First, the method analyzes the most significant statistical-time features calculated from vibration signal. Then, it uses a variant of the curvilinear component analysis, a nonlinear manifold learning technique, for compression and visualization of the feature behavior. It allows interpreting the underlying physical phenomenon. This technique has demonstrated to be a very powerful and promising tool in the diagnosis area. Finally, a hierarchical neural network structure is used to perform the classification stage. The effectiveness of this condition-monitoring scheme has been verified by experimental results obtained from different operating conditions.
Keywords :
computerised monitoring; condition monitoring; electric conduits; fault diagnosis; feature extraction; learning (artificial intelligence); machine bearings; neural nets; pattern classification; power engineering computing; principal component analysis; statistical analysis; vibrations; bearing fault detection; classification algorithm; condition monitoring scheme; curvilinear component analysis; distributed defect detection; electrical machine fault diagnosis; feature compression; feature visualization; hierarchical neural network structure; nonlinear manifold learning technique; operating condition; point ball fault; raceway faults; statistical time feature; vibration signal; Biological neural networks; Feature extraction; Shape; Support vector machine classification; Vectors; Vibrations; Ball bearings; classification algorithms; condition monitoring; fault diagnosis; feature extraction; induction motors; neural networks; vibrations;
Journal_Title :
Industrial Electronics, IEEE Transactions on
DOI :
10.1109/TIE.2012.2219838