DocumentCode :
742148
Title :
MEMS IMU and two-antenna GPS integration navigation system using interval adaptive Kalman filter
Author :
Xiufeng He ; Yang Le ; Wendong Xiao
Author_Institution :
Civil Eng., Hohai Univ., Nanjing, China
Volume :
28
Issue :
10
fYear :
2013
Firstpage :
22
Lastpage :
28
Abstract :
For a nonlinear integrated GPS/IMU system with an uncertain dynamic model, the standard extended Kalman filtering algorithm is no longer applicable. In this research, an interval filtering algorithm is applied to the uncertain integrated system. The system parameters uncertainties are described by intervals. The IAKF algorithm is established for the uncertain integrated system. The IAKF algorithm has the same structure as the standard extended Kalman filtering algorithm. The testing results indicate that the IAKF algorithm is effective for the uncertain nonlinear integrated system, and it can be used to test the chosen parameters of an integrated GPS/IMU system. Thus, the IAKF algorithm has good potential in real-time applications for nonlinear integrated systems with parameter and noise uncertainties.
Keywords :
Global Positioning System; adaptive Kalman filters; antennas; micromechanical devices; navigation; nonlinear filters; IAKF algorithm; MEMS IMU; extended Kalman filtering; interval adaptive Kalman filter; nonlinear integrated GPS/IMU system; two-antenna GPS integration navigation system; Global Positioning System; Kalman filters; Mathematical model; Nonlinear systems; Parameter estimation; Real-time systems; Uncertainty;
fLanguage :
English
Journal_Title :
Aerospace and Electronic Systems Magazine, IEEE
Publisher :
ieee
ISSN :
0885-8985
Type :
jour
DOI :
10.1109/MAES.2013.6642828
Filename :
6642828
Link To Document :
بازگشت