DocumentCode :
743900
Title :
Control Power Reduction and Frequency Bandwidth Enlargement of Robotic Legs by Nonlinear Resonance
Author :
Byeonghun Na ; Kyoungchul Kong
Author_Institution :
Dept. of Mech. Eng., Sogang Univ., Seoul, South Korea
Volume :
20
Issue :
5
fYear :
2015
Firstpage :
2340
Lastpage :
2349
Abstract :
Legged robots are regarded as a new means for transportation at uneven terrains and dangerous situations. In particular, quadruped robots that are capable of high-speed running are receiving great attention due to their superior mobility. The legs of such high-speed running robots rapidly repeat the swing and stance motions. Therefore, the legs of high-speed running robots should exhibit low impedance and friction for fast swing motions, while it is required to produce a significantly large actuation force for propulsion of the robot body in a stance phase. For this purpose, a direct-driven actuation mechanism was proposed for the Cheetaroid robot in our previous work. In this paper, in order to further enlarge the frequency bandwidth of the leg module and to reduce the required control (i.e., actuation) power, a dual-stage spring is designed to introduce a motion-adaptive resonance into the system. The structure and parameters of the dual-stage spring are determined in an optimal manner to minimize the control power. The resonance due to the dual-stage spring occurs only during high-speed locomotion, since the overall mechanism is designed such that the spring force is applied to the leg for high-speed locomotion only. The proposed system is verified by simulation studies and experimental results in this paper.
Keywords :
adaptive systems; force control; legged locomotion; motion control; nonlinear systems; resonance; springs (mechanical); Cheetaroid robot; actuation force; control power reduction; direct-driven actuation mechanism; dual-stage spring design; frequency bandwidth enlargement; legged robot; motion-adaptive resonance; nonlinear resonance; quadruped robot; stance motion; swing motion; Force; Frequency control; Hip; Joints; Legged locomotion; Springs; Actuators; linear motors; mechatronics;
fLanguage :
English
Journal_Title :
Mechatronics, IEEE/ASME Transactions on
Publisher :
ieee
ISSN :
1083-4435
Type :
jour
DOI :
10.1109/TMECH.2014.2376564
Filename :
6990600
Link To Document :
بازگشت