Title :
Estimation of Constrained Parameters With Guaranteed MSE Improvement
Author :
Benavoli, Alessio ; Chisci, Luigi ; Farina, Alfonso
Author_Institution :
DSI, Universita di Firenze, Florence
fDate :
4/1/2007 12:00:00 AM
Abstract :
We address the problem of estimating an unknown parameter vector x in a linear model y=Cx+v subject to the a priori information that the true parameter vector x belongs to a known convex polytope X. The proposed estimator has the parametrized structure of the maximum a posteriori probability (MAP) estimator with prior Gaussian distribution, whose mean and covariance parameters are suitably designed via a linear matrix inequality approach so as to guarantee, for any xisinX, an improvement of the mean-squared error (MSE) matrix over the least-squares (LS) estimator. It is shown that this approach outperforms existing "superefficient" estimators for constrained parameters based on different parametrized structures and/or shapes of the parameter membership region X
Keywords :
Gaussian distribution; least mean squares methods; linear matrix inequalities; maximum likelihood estimation; parameter estimation; Gaussian distribution; MAP estimator; convex polytope; guaranteed MSE; least-squares estimator; linear matrix inequality; maximum a posteriori probability estimator; mean-squared error matrix; parameter vector estimation; Covariance matrix; Gaussian distribution; Gaussian noise; Linear matrix inequalities; Maximum likelihood estimation; Minimax techniques; Parameter estimation; Shape; Target tracking; Vectors; Constrained estimators; dominating estimators; least-squares methods; linear estimation; parameter estimation; target tracking;
Journal_Title :
Signal Processing, IEEE Transactions on
DOI :
10.1109/TSP.2006.888094