• DocumentCode
    746299
  • Title

    A redundant representation of GF(qn) for designing arithmetic circuits

  • Author

    Geiselmann, W. ; Steinwandt, R.

  • Author_Institution
    Fakultat fur Inf., Karlsruhe Univ., Germany
  • Volume
    52
  • Issue
    7
  • fYear
    2003
  • fDate
    7/1/2003 12:00:00 AM
  • Firstpage
    848
  • Lastpage
    853
  • Abstract
    Generalizing a construction of Silverman (1999), we describe a redundant representation of finite fields GF(qn), where computations in GF(qn) are realized through computations in a suitable residue class algebra. Our focus is on fields of characteristic ≠ 2 and we show that the representation discussed here can, in particular, be used for designing a highly regular multiplication circuit for GF qn).
  • Keywords
    Galois fields; circuit CAD; multiplying circuits; redundant number systems; residue number systems; Galois field arithmetic; VLSI implementation; arithmetic circuit design; computations; finite fields; highly regular multiplication circuit; redundant representation; residue class algebra; Design automation; Galois fields; Multiplying circuits; Redundant number systems; Residue arithmetic;
  • fLanguage
    English
  • Journal_Title
    Computers, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0018-9340
  • Type

    jour

  • DOI
    10.1109/TC.2003.1214334
  • Filename
    1214334