DocumentCode :
746299
Title :
A redundant representation of GF(qn) for designing arithmetic circuits
Author :
Geiselmann, W. ; Steinwandt, R.
Author_Institution :
Fakultat fur Inf., Karlsruhe Univ., Germany
Volume :
52
Issue :
7
fYear :
2003
fDate :
7/1/2003 12:00:00 AM
Firstpage :
848
Lastpage :
853
Abstract :
Generalizing a construction of Silverman (1999), we describe a redundant representation of finite fields GF(qn), where computations in GF(qn) are realized through computations in a suitable residue class algebra. Our focus is on fields of characteristic ≠ 2 and we show that the representation discussed here can, in particular, be used for designing a highly regular multiplication circuit for GF qn).
Keywords :
Galois fields; circuit CAD; multiplying circuits; redundant number systems; residue number systems; Galois field arithmetic; VLSI implementation; arithmetic circuit design; computations; finite fields; highly regular multiplication circuit; redundant representation; residue class algebra; Design automation; Galois fields; Multiplying circuits; Redundant number systems; Residue arithmetic;
fLanguage :
English
Journal_Title :
Computers, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9340
Type :
jour
DOI :
10.1109/TC.2003.1214334
Filename :
1214334
Link To Document :
بازگشت