DocumentCode :
747995
Title :
An implementation efficient learning algorithm for adaptive control using associative content addressable memory
Author :
Hu, Yendo ; Fellman, Ronald D.
Author_Institution :
Dept. of Electr. & Comput. Eng., California Univ., San Diego, La Jolla, CA, USA
Volume :
25
Issue :
4
fYear :
1995
fDate :
4/1/1995 12:00:00 AM
Firstpage :
704
Lastpage :
709
Abstract :
Three modifications to the Boxes-ASE/ACE reinforcement learning improves implementation efficiency and performance. A state history queue (SHQ) eliminates computations for temporally insignificant states. A dynamic link table only allocates control memory to states the system traverses. CMAC state association uses previous learning to decrease training time. Simulations show a 4-fold improvement in learning. The SHQ in a hardware implementation of the pole-cart balancer reduces computation time 11-fold
Keywords :
adaptive control; computational complexity; content-addressable storage; learning (artificial intelligence); Boxes-ASE/ACE reinforcement learning; CMAC state association; adaptive control; associative content-addressable memory; computation time; dynamic link table; implementation efficient learning algorithm; pole-cart balancer; state history queue; Adaptive control; Algorithm design and analysis; Associative memory; Computational modeling; Control systems; Decoding; Equations; Hardware; History; Learning;
fLanguage :
English
Journal_Title :
Systems, Man and Cybernetics, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9472
Type :
jour
DOI :
10.1109/21.370204
Filename :
370204
Link To Document :
بازگشت