DocumentCode :
748593
Title :
Efficiency of the Approximated Shape Parameter Estimator in the Generalized Gaussian Distribution
Author :
González-Farías, Graciela ; Molina, J. Armando Domínguez ; Rodríguez-Dagnino, Ramón M.
Author_Institution :
Centro de Investig. en Mat., Guanajuato, Mexico
Volume :
58
Issue :
8
fYear :
2009
Firstpage :
4214
Lastpage :
4223
Abstract :
In this paper, we study the efficiency of an explicit approximated estimator of shape parameter p in a generalized Gaussian distribution. An estimator for p based on the method of moments does not always exist. However, such an estimator can be found with high probability for most practical situations. The proposed estimator is an explicit approximate solution to the transcendental estimator obtained by the method of moments. We obtain an explicit expression of its asymptotic variance, and we provide a procedure for constructing confidence intervals for p.
Keywords :
Gaussian distribution; approximation theory; maximum likelihood estimation; method of moments; random processes; asymptotic variance; confidence interval; explicit approximated shape parameter estimator; generalized Gaussian distribution; maximum likelihood estimation; method of moments; probability; random variable; transcendental estimator; Asymptotic variances; GG ratio function (gGrf); Gurland´s inequality; confidence intervals (CIs); generalized Gaussian (GG) distribution; method of moments; sampled gGrf (sgGrf);
fLanguage :
English
Journal_Title :
Vehicular Technology, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9545
Type :
jour
DOI :
10.1109/TVT.2009.2021270
Filename :
4838860
Link To Document :
بازگشت