DocumentCode
748593
Title
Efficiency of the Approximated Shape Parameter Estimator in the Generalized Gaussian Distribution
Author
González-Farías, Graciela ; Molina, J. Armando Domínguez ; Rodríguez-Dagnino, Ramón M.
Author_Institution
Centro de Investig. en Mat., Guanajuato, Mexico
Volume
58
Issue
8
fYear
2009
Firstpage
4214
Lastpage
4223
Abstract
In this paper, we study the efficiency of an explicit approximated estimator of shape parameter p in a generalized Gaussian distribution. An estimator for p based on the method of moments does not always exist. However, such an estimator can be found with high probability for most practical situations. The proposed estimator is an explicit approximate solution to the transcendental estimator obtained by the method of moments. We obtain an explicit expression of its asymptotic variance, and we provide a procedure for constructing confidence intervals for p.
Keywords
Gaussian distribution; approximation theory; maximum likelihood estimation; method of moments; random processes; asymptotic variance; confidence interval; explicit approximated shape parameter estimator; generalized Gaussian distribution; maximum likelihood estimation; method of moments; probability; random variable; transcendental estimator; Asymptotic variances; GG ratio function (gGrf); Gurland´s inequality; confidence intervals (CIs); generalized Gaussian (GG) distribution; method of moments; sampled gGrf (sgGrf);
fLanguage
English
Journal_Title
Vehicular Technology, IEEE Transactions on
Publisher
ieee
ISSN
0018-9545
Type
jour
DOI
10.1109/TVT.2009.2021270
Filename
4838860
Link To Document