• DocumentCode
    750076
  • Title

    Model parameter estimation for reciprocal Gaussian random processes

  • Author

    Cusani, R. ; Baccarelli, E. ; Blasio, G. Di

  • Author_Institution
    INFOCOM Dept., Rome Univ., Italy
  • Volume
    43
  • Issue
    3
  • fYear
    1995
  • fDate
    3/1/1995 12:00:00 AM
  • Firstpage
    792
  • Lastpage
    795
  • Abstract
    The problem of estimating the model parameters of a discrete-index reciprocal Gaussian random process from a limited number of noisy observations is addressed. The general case of a first-order multivariate process is analyzed, stating its basic properties and deriving a linear equation set that relates the model parameters (including the unknown variance of the observation noise) to the (generally nonstationary) autocorrelation function of the observed process. It generalizes to the reciprocal processes the so-called `high-order Yule-Walker equations´ for AR processes. Based on these results, a practical estimation algorithm is proposed
  • Keywords
    Gaussian processes; Markov processes; autoregressive processes; correlation theory; discrete systems; parameter estimation; random processes; signal processing; AR processes; autocorrelation function; discrete-index reciprocal Gaussian random process; first-order multivariate process; high-order Yule-Walker equations; linear equation set; model parameter estimation; noisy observations; observation noise; practical estimation algorithm; unknown variance; Additive noise; Boundary conditions; Covariance matrix; Equations; Gaussian noise; Gaussian processes; Integrated circuit modeling; Iterative algorithms; Parameter estimation; Random processes;
  • fLanguage
    English
  • Journal_Title
    Signal Processing, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    1053-587X
  • Type

    jour

  • DOI
    10.1109/78.370639
  • Filename
    370639