DocumentCode :
750143
Title :
Error-Correction Capability of Column-Weight-Three LDPC Codes
Author :
Chilappagari, Shashi Kiran ; Vasic, Bane
Author_Institution :
Dept. of Electr. & Comput. Eng., Univ. of Arizona, Tucson, AZ
Volume :
55
Issue :
5
fYear :
2009
fDate :
5/1/2009 12:00:00 AM
Firstpage :
2055
Lastpage :
2061
Abstract :
In this paper, the error-correction capability of column-weight-three low-density parity-check (LDPC) codes when decoded using the Gallager A algorithm is investigated. It is proved that a necessary condition for a code to correct all error patterns with up to k ges 5 errors is to avoid cycles of length up to 2k in its Tanner graph. As a consequence of this result, it is shown that given any alpha > 0, exist N such that forall n > N, no code in the ensemble of column-weight-three codes can correct all alphan or fewer errors. The results are extended to the bit flipping algorithms.
Keywords :
error correction codes; parity check codes; Gallager A algorithm; Tanner graph; bit flipping algorithms; column-weight-three LDPC codes; error correction capability; low density parity check codes; Algorithm design and analysis; Bipartite graph; Block codes; Decoding; Error correction; Error correction codes; Error probability; Graph theory; Message passing; Parity check codes; Error-correction capability; Gallager A algorithm; Tanner graph; low-density parity-check (LDPC) codes; trapping sets;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/TIT.2009.2015990
Filename :
4839050
Link To Document :
بازگشت