DocumentCode :
752109
Title :
Internal Scheduling and Memory Contention
Author :
Smith, Alan Jay
Author_Institution :
Computer Science Division, Department of Electrical Engineering and Computer Sciences, University of California
Issue :
1
fYear :
1981
Firstpage :
135
Lastpage :
146
Abstract :
It has been suggested that the algorithm used to schedule those processes active and in main memory can have an effect on memory contention. We create models for memory contention in a system that uses global LRU replacement and either round robin or priority internal scheduling. Parameters to our model include the ratio of secondary storage to primary storage access times, thus allowing consideration of a variety of storage technologies. The round robin quantum size is included and is shown to have some effect. Our model uses LRU miss ratio curves and thus reflects actual program characteristics. Trace driven simulations are used to verify the accuracy of the models. We find that in most cases internal scheduling has only a small effect on page fault rates and CPU utilization. In certain cases, however priority scheduling is found to besignificant in relieving thrashing.
Keywords :
LRU; memory contention; paging; priority scheduling; program behavior; round robin scheduling; scheduling; storage technology; thrashing; virtual memory; Computer science; Contracts; Costs; Interference; Linear accelerators; Partitioning algorithms; Processor scheduling; Protection; Round robin; Scheduling algorithm; LRU; memory contention; paging; priority scheduling; program behavior; round robin scheduling; scheduling; storage technology; thrashing; virtual memory;
fLanguage :
English
Journal_Title :
Software Engineering, IEEE Transactions on
Publisher :
ieee
ISSN :
0098-5589
Type :
jour
DOI :
10.1109/TSE.1981.230820
Filename :
1702811
Link To Document :
بازگشت