• DocumentCode
    754690
  • Title

    Recursive solutions of estimating equations and adaptive spectral factorization

  • Author

    Lai, Tze Leung ; Ying, Zhiliang

  • Author_Institution
    Dept. of Stat., Stanford Univ., CA, USA
  • Volume
    37
  • Issue
    2
  • fYear
    1992
  • fDate
    2/1/1992 12:00:00 AM
  • Firstpage
    240
  • Lastpage
    243
  • Abstract
    A recursive spectral factorization algorithm was developed by V. Solo (ibid., vol.34, no.10, pp.1047-1051, Oct. 1989) to be used with recursive instrumental variables for consistent estimation of the parameters of an ARMAX system, but the convergence of the spectral factorization algorithm is questionable. Herein, a modified adaptive spectral factorization algorithm is shown to converge and a general method for constructing convergent recursive solutions of nonlinear equations that are used to define parameter estimates is also presented
  • Keywords
    convergence; iterative methods; parameter estimation; ARMAX system; adaptive spectral factorization; convergent recursive solutions; iterative methods; nonlinear equations; parameter estimation; Adaptive equalizers; Linear matrix inequalities; Notice of Violation; Parameter estimation; Recursive estimation; Riccati equations; Statistics; Sufficient conditions; Symmetric matrices; Time varying systems;
  • fLanguage
    English
  • Journal_Title
    Automatic Control, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0018-9286
  • Type

    jour

  • DOI
    10.1109/9.121627
  • Filename
    121627