DocumentCode :
756068
Title :
Asymptotic Geometry of Multiple Hypothesis Testing
Author :
Westover, M. Brandon
Author_Institution :
Dept. of Neurology, Massachusetts Gen. Hosp., Boston, MA
Volume :
54
Issue :
7
fYear :
2008
fDate :
7/1/2008 12:00:00 AM
Firstpage :
3327
Lastpage :
3329
Abstract :
We present a simple geometrical interpretation for the solution to the multiple hypothesis testing problem in the asymptotic limit. Under this interpretation, the optimal decision rule is a nearest neighbor classifier on the probability simplex.
Keywords :
error statistics; pattern recognition; probability; asymptotic limit; geometrical interpretation; multiple hypothesis testing; nearest neighbor classifier; optimal decision rule; probability simplex; Error probability; Histograms; Hospitals; Information geometry; Nearest neighbor searches; Nervous system; Pattern recognition; Probability distribution; Statistical learning; Testing; Geometry; hypothesis testing; large deviations; pattern recognition;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/TIT.2008.924656
Filename :
4544997
Link To Document :
بازگشت