DocumentCode :
757417
Title :
Comparison of Cathodoluminescent and Photoluminescent Emission Spectra of {\\rm LuPO} _{4} With Europium, Erbium, and Neodymium Dopants
Author :
Goedeke, S.M. ; Hollerman, W.A. ; Allison, S.W. ; Gray, P.A. ; Lewis, L.A. ; Smithwick, R.W. ; Boatner, L.A. ; Glasgow, D.C. ; Fontenot, R.S. ; Wise, H.
Author_Institution :
Oak Ridge Nat. Lab. (ORNL), Oak Ridge, TN
Volume :
55
Issue :
3
fYear :
2008
fDate :
6/1/2008 12:00:00 AM
Firstpage :
1107
Lastpage :
1110
Abstract :
The current interest in returning human exploration to the Moon and Mars makes cost-effective and low-mass health monitoring sensors essential for spacecraft development. In space, there are many surface measurements that are required to monitor the condition of the spacecraft including: surface temperature, radiation dose, and impact. Through the use of tailored phosphors, these conditions can be monitored. Practical space-based phosphor sensors will depend heavily upon research investigating the resistance of phosphors to ionizing radiation and their ability to anneal or "self-heal" from damage caused by ionizing radiation. For the present research, a group of lutetium orthophosphate (LuPO4) crystals with dopants including europium, erbium, and neodymium were characterized. Cathodoluminescence (CL) testing was performed using the low energy electron system located at the NASA Marshall Space Flight Center in Huntsville, Alabama. The data were collected using an Ocean Optics HR4000 spectrometer and a fiber optic feed-through. Previous research has shown that increases in both beam energy and current density improved the CL fluorescence yield. While the total electron dose was small, the intention was to maximize the number of irradiated materials. Additionally, these samples were evaluated using a PTI Quantum Master Spectrophotometer to determine the photoluminescence emission spectra.
Keywords :
annealing; cathodoluminescence; electron beam effects; erbium; europium; fluorescence; lutetium compounds; neodymium; phosphors; photoluminescence; LuPO4:Er; LuPO4:Eu; LuPO4:Nd; NASA Marshall Space Flight Center; Ocean Optics HR4000 spectrometer; PTI Quantum Master Spectrophotometer; annealing; cathodoluminescent emission spectra; electron dose; erbium dopant; europium dopant; fiber optic feed-through; fluorescence; ionizing radiation; irradiated materials; low energy electron system; low-mass health monitoring sensors; lutetium orthophosphate; neodymium dopant; photoluminescent emission spectra; radiation dose; space-based phosphor sensors; surface temperature; Condition monitoring; Electrons; Humans; Ionizing radiation; Moon; Ocean temperature; Phosphors; Sea surface; Space vehicles; Surface resistance;
fLanguage :
English
Journal_Title :
Nuclear Science, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9499
Type :
jour
DOI :
10.1109/TNS.2008.916064
Filename :
4545126
Link To Document :
بازگشت