• DocumentCode
    7577
  • Title

    Novel Blind Identification of LDPC Codes Using Average LLR of Syndrome a Posteriori Probability

  • Author

    Tian Xia ; Hsiao-Chun Wu

  • Author_Institution
    Sch. of Electr. Eng. & Comput. Sci., Louisiana State Univ., Baton Rouge, LA, USA
  • Volume
    62
  • Issue
    3
  • fYear
    2014
  • fDate
    Feb.1, 2014
  • Firstpage
    632
  • Lastpage
    640
  • Abstract
    Blind signal processing methods have been very popular recently since they can play crucial roles in the prevalent cognitive radio research. Blind encoder identification has drawn research interest lately. In this paper, we would like to tackle the blind identification of binary low-density parity-check (LDPC) codes for binary phase-shift keying (BPSK) signals. We propose a novel blind identification system which consists of three components, namely expectation-maximization (EM) estimator for signal amplitude and noise variance, log-likelihood ratio (LLR) estimator for syndrome a posteriori probabilities, and maximum average LLR detector. Monte Carlo simulation results demonstrate that our proposed blind LDPC encoder identification scheme is very promising even for low signal-to-noise ratio conditions.
  • Keywords
    Monte Carlo methods; binary codes; blind source separation; expectation-maximisation algorithm; parity check codes; phase shift keying; probability; LDPC codes; Monte Carlo simulation; binary low-density parity-check codes; binary phase-shift keying signals; blind identification; expectation-maximization estimator; log-likelihood ratio estimator; maximum average LLR detector; noise variance; signal amplitude; syndrome a posteriori probabilities; syndrome a posteriori probability; Binary phase shift keying; Noise; Parity check codes; Receivers; Transceivers; Transmitters; Vectors; Blind signal processing; cognitive radio; expectation maximization (EM); low-density parity-check (LDPC) codes;
  • fLanguage
    English
  • Journal_Title
    Signal Processing, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    1053-587X
  • Type

    jour

  • DOI
    10.1109/TSP.2013.2293975
  • Filename
    6678305