Title :
Effect of cable load impedance on coupling schemes for MV power line communication
Author :
Wouters, Peter A A F ; Van Der Wielen, Peter C J M ; Veen, Jeroen ; Wagenaars, Paul ; Steennis, E. Fred
Author_Institution :
Eindhoven Univ. of Technol., Netherlands
fDate :
4/1/2005 12:00:00 AM
Abstract :
Coupling of carrier wave frequencies up to 95 kHz (within the European CENELEC A-band) for online diagnostic data transfer in medium voltage cables is studied. Inductive and capacitive signal coupling is considered not only on basis of technical performance, but also on basis of practical aspects. The effectiveness of coupling schemes depends on the impedances of substation equipment at the cable terminals. The frequency response of a 10-kV, 400-kVA three-phase cast resin distribution transformer is investigated. In the frequency range of interest, the behavior is well described by a capacitance of typically 1 nF. The signal transfer over a 4-km paper cable, terminated by various load impedances to mimic real equipment is studied. From the results it is concluded that for inductive coupling performance within the CENELEC A-band may be sufficient, except for substations at the end of a grid. Transferring signals containing frequencies up to several megahertz, which is already required for synchronization of partial discharge detection and location equipment, is feasible under all conditions. Measurements on life substations indicate that up to these frequencies substation components can still be accurately modeled as lumped circuit impedances.
Keywords :
carrier transmission on power lines; electric impedance; frequency response; load (electric); partial discharges; power cables; power transformers; substations; 1 nF; 10 kV; 4 km; 400 kVA; cable load impedance; capacitive signal coupling; carrier wave frequency; cast resin distribution transformer; coupling method; frequency response; inductive signal coupling; lumped circuit impedance; medium voltage cable; medium voltage power line communication; online diagnostic data transfer; partial discharge detection; substation; Capacitance; Communication cables; Frequency response; Impedance; Medium voltage; Power cables; Power line communications; Resins; Standards; Substations; Communication channels; fault location; multi-conductor transmission lines; noise measurement; partial discharges; power cable insulation; power transformers; propagation; substation measurements;
Journal_Title :
Power Delivery, IEEE Transactions on
DOI :
10.1109/TPWRD.2005.844334