DocumentCode :
759285
Title :
Error Event Statistics for Convolutional Codes
Author :
Hankamer, Michael
Author_Institution :
Texas A&I Univ., Kingsville, TX
Volume :
28
Issue :
2
fYear :
1980
fDate :
2/1/1980 12:00:00 AM
Firstpage :
302
Lastpage :
304
Abstract :
Viterbi (1971) introduced a structure generating function T(D,N,L) for convolutional codes and used it to bound the probability of a decoding error P(\\bar{e}) . Viterbi\´s result is used to approximate the probability function P(l, \\bar{e}) on error events of length l . Using P(l,\\bar{e}) , approximate values are found for the error event statistics E {D} , the expected number of symbol errors in an error event; E{N} , the expected number of branch errors in an error event; and E{L} , the expected length (in branches) of an error event. The statistics are technically approximate, but are practically upper bounds, loose at high channel error rates, and tightening as the channel error rate drops. The per-unit-length statistics E{N | l} and E {D | l} appear to be of use in finding good codes.
Keywords :
Convolutional codes; Viterbi decoding; Convolutional codes; Error analysis; Minimax techniques; Phase change materials; Probability; Pulse modulation; Quantization; Signal to noise ratio; Statistical distributions; Telephony;
fLanguage :
English
Journal_Title :
Communications, IEEE Transactions on
Publisher :
ieee
ISSN :
0090-6778
Type :
jour
DOI :
10.1109/TCOM.1980.1094662
Filename :
1094662
Link To Document :
بازگشت