DocumentCode :
759545
Title :
Influence of overhead transmission line on grounding impedance measurement of substation
Author :
Zeng, Rong ; He, Jinliang ; Lee, Jaebok ; Chang, Sughun ; Tu, Youping ; Gao, Yanqing ; Zou, Jun ; Guan, Zhicheng
Author_Institution :
Dept. of Electr. Eng., Tsinghua Univ., Beijing, China
Volume :
20
Issue :
2
fYear :
2005
fDate :
4/1/2005 12:00:00 AM
Firstpage :
1219
Lastpage :
1225
Abstract :
How to precisely measure the grounding impedance of large-scale substations is a fundamental guarantee for the safe operation of power systems. If the ground wires were connected to the grounding grid, these ground wires would shunt a part of the injected measuring current and allow the measured grounding impedance to be smaller than the actual impedance of the grounding system. Based on an actual 500-kV grounding system, this paper discusses how to analyze the influence of the overhead ground wire on the measured grounding impedance and how to obtain the real grounding impedance of the grounding system. A numerical analysis model considering the grounding system, the transmission lines, towers, and their grounding devices, based on the multilayer soil model analyzed from field test data of apparent soil resistivity, was constructed to analyze the influence of ground wires and tower grounding resistances on grounding impedance, and the general effects of different parameters, such as tower impedance, grounding impedance, and circuits of transmission lines, were analyzed. The real grounding impedance of the substation with connected overhead ground wires was validated, and some useful results have been obtained, based on the field-measured values and numerical analysis.
Keywords :
earthing; electric impedance measurement; numerical analysis; poles and towers; power overhead lines; power system measurement; soil; substations; 500 kV; ground wire resistance; multilayer soil model; numerical analysis; overhead transmission lines; soil resistivity; substation grounding impedance measurement; tower grounding resistance; Current measurement; Grounding; Impedance measurement; Numerical analysis; Poles and towers; Power transmission lines; Soil; Substations; Transmission line measurements; Wires; Grounding impedance; grounding resistance; grounding system; measurement; overhead ground wire; overhead transmission line; substation;
fLanguage :
English
Journal_Title :
Power Delivery, IEEE Transactions on
Publisher :
ieee
ISSN :
0885-8977
Type :
jour
DOI :
10.1109/TPWRD.2004.841306
Filename :
1413383
Link To Document :
بازگشت