DocumentCode :
759771
Title :
Spatial retardation of carrier heating in scaled 0.1-μm n-MOSFET´s using Monte Carlo simulations
Author :
Hulfachor, R.B. ; Ellis-Monaghan, J.J. ; Kim, K.W. ; Littlejohn, M.A.
Author_Institution :
Dept. of Electr. & Comput. Eng., North Carolina State Univ., Raleigh, NC, USA
Volume :
43
Issue :
4
fYear :
1996
fDate :
4/1/1996 12:00:00 AM
Firstpage :
661
Lastpage :
663
Abstract :
A comprehensive Monte Carlo simulator is employed to investigate nonlocal carrier transport in 0.1 μm n-MOSFET´s under low-voltage stress. Specifically, the role of electron-electron (e-e) interactions on hot electron injection is explored for two emerging device designs biased at a drain voltage Vd considerably less than the Si/SiO2 injection barrier height φb. Simulation of both devices reveal that 1) although qVdb, carriers can obtain energies greater than φb, and 2) the peak for electron injection is displaced approximately 20 nm beyond the peak in the parallel channel electric field. These phenomena constitute a spatial retardation of carrier heating that is strongly influenced by e-e interactions near the drain edge. (Virtually no injection is observed in our simulations when e-e scattering is not considered.) Simulations also show that an aggressive design based on larger dopant atoms, steeper doping gradients, and a self-aligned junction counter-doping process produces a higher peak in the channel electric field, a hotter carrier energy distribution, and a greater total electron injection rate into the oxide when compared to a more conventionally-doped design. The impact of spatially retarded carrier heating on hot-electron-induced device degradation is further examined by coupling an interface state distribution obtained from Monte Carlo simulations with a drift-diffusion simulator. Because of retarded carrier heating, the interface states are mainly generated further over the drain region where interface charge produces minimal degradation. Thus, surprisingly, both 0.1 μm n-MOSFET designs exhibit comparable drain current degradation rates
Keywords :
MOSFET; Monte Carlo methods; carrier mobility; doping profiles; hot carriers; interface states; semiconductor device models; semiconductor doping; 0.1 micron; MOSFET; Monte Carlo simulations; Si-SiO2; carrier energy distribution; carrier heating retardation; current degradation rates; doping gradients; drain voltage; drift-diffusion simulator; electron-electron interactions; interface state distribution; low-voltage stress; nonlocal carrier transport; parallel channel electric field; self-aligned junction counter-doping process; total electron injection rate; Degradation; Doping; Interface states; MOSFET circuits; Monte Carlo methods; Resistance heating; Scattering; Secondary generated hot electron injection; Stress; Voltage;
fLanguage :
English
Journal_Title :
Electron Devices, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9383
Type :
jour
DOI :
10.1109/16.485550
Filename :
485550
Link To Document :
بازگشت