DocumentCode :
759879
Title :
Parameter estimation in Markov random field contextual models using geometric models of objects
Author :
Nadabar, Sateesha G. ; Jain, Anil K.
Author_Institution :
Innovision Corp., Madison, WI, USA
Volume :
18
Issue :
3
fYear :
1996
fDate :
3/1/1996 12:00:00 AM
Firstpage :
326
Lastpage :
329
Abstract :
We present a new scheme for the estimation of Markov random field line process parameters which uses geometric CAD models of the objects in the scene. The models are used to generate synthetic images of the objects from random view points. The edge maps computed from the synthesized images are used as training samples to estimate the line process parameters using a least squares method. We show that this parameter estimation method is useful for detecting edges in range as well as intensity edges. The main contributions of the paper are: 1) use of CAD models to obtain true edge labels which are otherwise not available; and 2) use of canonical Markov random field representation to reduce the number of parameters
Keywords :
CAD; Markov processes; computational geometry; computer graphics; edge detection; least squares approximations; parameter estimation; CAD models; Markov random field; clique potentials; contextual models; edge detection; edge maps; geometric models; least squares method; parameter estimation; random view points; range image; synthetic images; Context modeling; Frequency estimation; Image edge detection; Image generation; Labeling; Layout; Least squares methods; Markov random fields; Parameter estimation; Solid modeling;
fLanguage :
English
Journal_Title :
Pattern Analysis and Machine Intelligence, IEEE Transactions on
Publisher :
ieee
ISSN :
0162-8828
Type :
jour
DOI :
10.1109/34.485560
Filename :
485560
Link To Document :
بازگشت