• DocumentCode
    760128
  • Title

    Recurrent Neurofuzzy Network in Thermal Modeling of Power Transformers

  • Author

    Hell, Michel ; Costa, Pyramo, Jr. ; Gomide, Fernando

  • Author_Institution
    Dept. ofComputer Eng. & Autom., State Univ. of Campinas
  • Volume
    22
  • Issue
    2
  • fYear
    2007
  • fDate
    4/1/2007 12:00:00 AM
  • Firstpage
    904
  • Lastpage
    910
  • Abstract
    This work suggests recurrent neurofuzzy networks as a means to model the thermal condition of power transformers. Experimental results with actual data reported in the literature show that neurofuzzy modeling requires less computational effort, and is more robust and efficient than multilayer feedforward networks, a radial basis function network, and classic deterministic modeling approaches
  • Keywords
    electric machine analysis computing; fuzzy neural nets; power transformers; recurrent neural nets; classic deterministic modeling; multilayer feedforward networks; power transformers; radial basis function network; recurrent neurofuzzy network; thermal modeling; Aging; Artificial neural networks; Computational modeling; Computer networks; Condition monitoring; Nonlinear dynamical systems; Power system modeling; Power transformers; Robustness; Temperature; Power transformers; recurrent neurofuzzy networks (RNFNs); thermal modeling;
  • fLanguage
    English
  • Journal_Title
    Power Delivery, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0885-8977
  • Type

    jour

  • DOI
    10.1109/TPWRD.2006.874613
  • Filename
    4141123