Title :
A general planar waveguide autoregressive optical filter
Author :
Madsen, Christi K. ; Zhao, Jian H.
Author_Institution :
AT&T Submarine Syst. Inc., Holmdel, NJ, USA
fDate :
3/1/1996 12:00:00 AM
Abstract :
A general architecture for an autoregressive (AR) planar waveguide optical filter is demonstrated for the first time. Its advantages are a flatter passband, sharper rolloff and better rejection in the stopband compared to finite impulse response (FIR) filters with the same number of stages. The architecture can be extended to an arbitrary number of stages. A modified Levinson algorithm is derived for filter synthesis and analysis which includes waveguide loss and phase errors between stages. The filter analysis algorithm allows the filter´s coupling ratios and phase errors for each stage to be determined from the filter´s spectral response. When combined with a postfabrication tuning process, this analysis method provides feedback for optimizing the response. Autoregressive lattice filters were designed and fabricated using Ge-doped silica waveguides. Measurements are reported which demonstrate the synthesis and analysis algorithms. The impact of fabrication tolerances on filter synthesis and of measurement uncertainties on filter analysis are investigated
Keywords :
autoregressive processes; band-pass filters; error analysis; filtering theory; germanate glasses; optical communication equipment; optical design techniques; optical glass; optical losses; optical planar waveguides; optical waveguide components; optical waveguide filters; optimisation; wavelength division multiplexing; Ge-doped silica waveguides; autoregressive lattice filter design; better rejection; coupling ratios; filter analysis; filter analysis algorithm; filter spectral response; filter synthesis; flatter passband; general architecture; measurement uncertainties; modified Levinson algorithm; phase error; phase errors; planar waveguide autoregressive optical filter; planar waveguide optical filter; postfabrication tuning process; sharper rolloff; stopband rejection; waveguide loss; Algorithm design and analysis; Feedback; Finite impulse response filter; Lattices; Optical filters; Optical planar waveguides; Optical waveguides; Optimization methods; Passband; Planar waveguides;
Journal_Title :
Lightwave Technology, Journal of