Title :
Nonparametric belief propagation for self-localization of sensor networks
Author :
Ihler, Alexander T. ; Fisher, John W. ; Moses, Randolph L. ; Willsky, Alan S.
Author_Institution :
Lab. for Inf. & Decision Syst., Massachusetts Inst. of Technol., Cambridge, MA, USA
fDate :
4/1/2005 12:00:00 AM
Abstract :
Automatic self-localization is a critical need for the effective use of ad hoc sensor networks in military or civilian applications. In general, self-localization involves the combination of absolute location information (e.g., from a global positioning system) with relative calibration information (e.g., distance measurements between sensors) over regions of the network. Furthermore, it is generally desirable to distribute the computational burden across the network and minimize the amount of intersensor communication. We demonstrate that the information used for sensor localization is fundamentally local with regard to the network topology and use this observation to reformulate the problem within a graphical model framework. We then present and demonstrate the utility of nonparametric belief propagation (NBP), a recent generalization of particle filtering, for both estimating sensor locations and representing location uncertainties. NBP has the advantage that it is easily implemented in a distributed fashion, admits a wide variety of statistical models, and can represent multimodal uncertainty. Using simulations of small to moderately sized sensor networks, we show that NBP may be made robust to outlier measurement errors by a simple model augmentation, and that judicious message construction can result in better estimates. Furthermore, we provide an analysis of NBP´s communications requirements, showing that typically only a few messages per sensor are required, and that even low bit-rate approximations of these messages can be used with little or no performance impact.
Keywords :
ad hoc networks; calibration; filtering theory; message passing; telecommunication network topology; wireless sensor networks; NBP; absolute location information; ad hoc sensor networks; automatic self-localization; message passing; network topology; nonparametric belief propagation; particle filtering; relative calibration information; sensor location estimation; Belief propagation; Calibration; Computer networks; Distance measurement; Distributed computing; Filtering; Graphical models; Military computing; Network topology; Sensor systems; Algorithms; calibration; distributed estimation; localization; message passing; sensor network;
Journal_Title :
Selected Areas in Communications, IEEE Journal on
DOI :
10.1109/JSAC.2005.843548