DocumentCode :
762928
Title :
Online adaptive fuzzy neural identification and control of a class of MIMO nonlinear systems
Author :
Gao, Yang ; Er, Meng Joo
Author_Institution :
Sch. of Electr. & Electron. Eng., Nanyang Technol. Univ., Singapore, Singapore
Volume :
11
Issue :
4
fYear :
2003
Firstpage :
462
Lastpage :
477
Abstract :
This paper presents a robust adaptive fuzzy neural controller (AFNC) suitable for identification and control of a class of uncertain multiple-input-multiple-output (MIMO) nonlinear systems. The proposed controller has the following salient features: 1) self-organizing fuzzy neural structure, i.e., fuzzy control rules can be generated or deleted automatically; 2) online learning ability of uncertain MIMO nonlinear systems; 3) fast learning speed; 4) fast convergence of tracking errors; 5) adaptive control, where structure and parameters of the AFNC can be self-adaptive in the presence of disturbances to maintain high control performance; 6) robust control, where global stability of the system is established using the Lyapunov approach. Simulation studies on an inverted pendulum and a two-link robot manipulator show that the performance of the proposed controller is superior.
Keywords :
MIMO systems; adaptive control; fuzzy control; fuzzy logic; identification; nonlinear control systems; robust control; Lyapunov theorem; MIMO nonlinear systems; adaptive control; identification; nonlinear systems; robust controller; self-organizing fuzzy neural structure; Adaptive control; Automatic control; Control systems; Fuzzy control; Fuzzy systems; MIMO; Nonlinear control systems; Nonlinear systems; Programmable control; Robust control;
fLanguage :
English
Journal_Title :
Fuzzy Systems, IEEE Transactions on
Publisher :
ieee
ISSN :
1063-6706
Type :
jour
DOI :
10.1109/TFUZZ.2003.814833
Filename :
1220292
Link To Document :
بازگشت