DocumentCode :
763170
Title :
Electromagnetic field parallel computation with a Hopfield neural network
Author :
Kant, Jean-Daniel ; Le Drezen, Jo ; Bigeon, Jean
Author_Institution :
Ecole Nat. Superieure des Telecommun. de Bretagne, Brest, France
Volume :
31
Issue :
3
fYear :
1995
fDate :
5/1/1995 12:00:00 AM
Firstpage :
1968
Lastpage :
1971
Abstract :
In this paper, we study the feasibility of computing the electromagnetic field in real situations with an artificial neural network, in order to speed up computation. Simulations of our method are presented. We also propose an implementation on an efficient hardware parallel architecture
Keywords :
Hopfield neural nets; electromagnetic fields; electrostatics; magnetostatics; parallel processing; Hopfield neural network; artificial neural network; electromagnetic field; hardware parallel architecture; parallel computation; Boundary conditions; Computer architecture; Computer networks; Concurrent computing; Electromagnetic fields; Hardware; Hopfield neural networks; Magnetostatics; Maxwell equations; Parallel architectures;
fLanguage :
English
Journal_Title :
Magnetics, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9464
Type :
jour
DOI :
10.1109/20.376427
Filename :
376427
Link To Document :
بازگشت