Title :
A Comprehensive Zero-Copy Architecture for High Performance Distributed Data Acquisition Over Advanced Network Technologies for the CMS Experiment
Author :
Bauer, G. ; Behrens, Ulf ; Branson, James ; Bukowiec, Sebastian ; Chaze, Olivier ; Cittolin, Sergio ; Coarasa Perez, Jose Antonio ; Deldicque, Christian ; Dobson, Matthew ; Dupont, Aymeric ; Erhan, Samim ; Gigi, Dominique ; Glege, Frank ; Gomez-Reino, Rob
Author_Institution :
Massachusetts Inst. of Technol., Cambridge, MA, USA
Abstract :
This paper outlines a software architecture where zero-copy operations are used comprehensively at every processing point from the Application layer to the Physical layer. The proposed architecture is being used during feasibility studies on advanced networking technologies for the CMS experiment at CERN. The design relies on a homogeneous peer-to-peer message passing system, which is built around memory pool caches allowing efficient and deterministic latency handling of messages of any size through the different software layers. In this scheme portable distributed applications can be programmed to process input to output operations by mere pointer arithmetic and DMA operations only. The approach combined with the open fabric protocol stack (OFED) allows one to attain near wire-speed message transfer at application level. The architecture supports full portability of user applications by encapsulating the protocol details and network into modular peer transport services whereas a transparent replacement of the underlying protocol facilitates deployment of several network technologies like Gigabit Ethernet, Myrinet, Infiniband, etc. Therefore, this solution provides a protocol-independent communication framework and prevents having to deal with potentially difficult couplings when the underlying communication infrastructure is changed. We demonstrate the feasibility of this approach by giving efficiency and performance measurements of the software in the context of the CMS distributed event building studies.
Keywords :
data acquisition; high energy physics instrumentation computing; local area networks; message passing; position sensitive particle detectors; software architecture; transition radiation detectors; CERN; CMS distributed event building studies; CMS experiment; DMA operations; Gigabit Ethernet; Infiniband; Myrinet; OFED; advanced network technologies; application layer; application level; approach feasibility; communication infrastructure; comprehensive zero-copy architecture; deterministic message latency handling; efficient message latency handling; feasibility studies; high performance distributed data acquisition; homogeneous peer-to-peer message passing system; memory pool caches; modular peer transport services; open fabric protocol stack; physical layer; pointer arithmetic; portable distributed applications; process input operation; process output operation; processing point; protocol encapsulating; protocol transparent replacement; protocol-independent communication framework solution; software architecture; software efficiency measurement; software layers; software performance measurement; user application portability; wire-speed message transfer; zero-copy operations; Data acquisition; Data communication; Distributed computing; Memory management; Physics computing; Software performance; Data acquisition systems; data communication; distributed computing; fast networks; high energy physics computing; software performance;
Journal_Title :
Nuclear Science, IEEE Transactions on
DOI :
10.1109/TNS.2013.2282340