Title :
Single-Pixel Phase-Corrected Fiber Bundle Endomicroscopy With Lensless Focussing Capability
Author :
Gordon, George Sinclair Dukoff ; Joseph, James ; Bohndiek, Sarah E. ; Wilkinson, Timothy David
Author_Institution :
Electr. Eng. Div., Univ. of Cambridge, Cambridge, UK
Abstract :
In this paper, a novel single-pixel method for coherent imaging through an endoscopic fiber bundle is presented. The use of a single-pixel detector allows greater sensitivity over a wider range of wavelengths, which could have significant applications in an endoscopic fluorescence microscopy. First, the principle of lensless focussing at the distal end of a coherent fiber bundle is simulated to examine the impact of pixelation at microscopic scales. Next, an experimental optical correlator system using spatial light modulators is presented. A simple contrast imaging method of characterizing and compensating phase aberrations introduced by fiber bundles is described. Experimental results are then presented showing that our phase compensation method enables characterization of the optical phase profile of individual fiberlets. After applying this correction, early results demonstrating the ability of the system to electronically adjust the focal plane at the distal end of the fiber bundle are presented. The structural similarity index between the simulated image and the experimental focus-adjusted image increases noticeably when the phase correction is applied and the retrieved image is visually recognizable. Strategies to improve image quality are discussed.
Keywords :
aberrations; biomedical optical imaging; endoscopes; focal planes; image retrieval; light coherence; medical image processing; optical fibres; optical microscopy; spatial light modulators; coherent fiber bundle; coherent imaging; endoscopic fluorescence microscopy; focal plane; image quality; image retrieval; lensless focussing capability; optical correlator system; phase aberration characterization; phase aberration compensation; simple contrast imaging method; single-pixel phase-corrected fiber bundle endomicroscopy; spatial light modulators; structural similarity index; Adaptive optics; Image quality; Lenses; Optical imaging; Optical variables measurement; Phase measurement; Endoscopes; holography; medical diagnostic imaging; optical fiber applications;
Journal_Title :
Lightwave Technology, Journal of
DOI :
10.1109/JLT.2015.2436816