Title :
Large-system performance of iterative multiuser decision-feedback detection
Author :
Honig, Michael L. ; Ratasuk, Rapeepat
Author_Institution :
Dept. of Electr. & Comput. Eng., Northwestern Univ., Evanston, IL, USA
Abstract :
The large-system performance of iterative multiuser decision-feedback detectors (DFDs) is studied for synchronous coded direct-sequence code-division multiple access. Both successive and parallel demodulation of users are considered. The filters are optimized according to the minimum mean-squared error criteria, assuming perfect feedback. We first consider Viterbi decoding with hard decision feedback, and compute union bounds on the large-system error rate. We then consider maximum a posteriori (MAP) decoding with soft decision feedback, and evaluate the error rate semianalytically by assuming the log-likelihood ratios computed by the MAP decoder are Gaussian random variables. Performance is studied numerically as a function of noise level, spectral efficiency, and code rate. Results show that soft decision feedback gives substantial gains relative to hard decision feedback. At moderate spectral efficiencies (users divided by bandwidth expansion less than 0.9), the iterative DFDs with soft decision feedback based on a posteriori probabilities can achieve near-single-user performance at an Eb/N0 close to the large-system capacity bound.
Keywords :
Viterbi decoding; automatic repeat request; code division multiple access; demodulation; feedback; iterative methods; mean square error methods; multiuser detection; spread spectrum communication; Gaussian random variables; MAP decoder; Viterbi decoding; bandwidth expansion; error rate; hard decision feedback; iterative multiuser decision-feedback detection; large-system capacity bound; large-system error rate; large-system performance; log-likelihood ratios; minimum mean-squared error criteria; noise level; parallel demodulation; perfect feedback; soft decision feedback; spectral efficiency; synchronous coded direct-sequence code-division multiple access; Demodulation; Design for disassembly; Detectors; Direct-sequence code-division multiple access; Error analysis; Feedback; Filters; Iterative decoding; Random variables; Viterbi algorithm;
Journal_Title :
Communications, IEEE Transactions on
DOI :
10.1109/TCOMM.2003.815041