• DocumentCode
    765346
  • Title

    Parameter estimation for noncausal ARMA models of non-Gaussian signals via cumulant matching

  • Author

    Tugnait, Jitendra K.

  • Author_Institution
    Dept. of Electr. Eng., Auburn Univ., AL, USA
  • Volume
    43
  • Issue
    4
  • fYear
    1995
  • fDate
    4/1/1995 12:00:00 AM
  • Firstpage
    886
  • Lastpage
    893
  • Abstract
    We consider the problem of estimating the parameters of a stable (stationary), scalar ARMA(p,q) signal model driven by an i.i.d. non-Gaussian sequence. The driving noise sequence is not observed. The signal is allowed to be nonminimum phase and/or noncausal (i.e., poles may lie both inside as well as outside the unit circle). We address the problem of parameter identifiability given the higher order cumulants of the signal on a finite set of lags. The sufficient set of lags required to achieve parameter identifiability is the smallest to date. The sufficient conditions for parameter identifiability are also the least restrictive to date. We also propose a frequency-domain approach for time-domain, nonlinear optimization of a quadratic cumulant matching criterion. Illustrative computer simulation results are presented
  • Keywords
    autoregressive moving average processes; frequency-domain analysis; higher order statistics; optimisation; parameter estimation; computer simulation results; cumulant matching; driving noise sequence; frequency-domain approach; higher order cumulants; non-Gaussian sequence; non-Gaussian signals; noncausal ARMA models; nonminimum phase signal; parameter estimation; parameter identification; quadratic cumulant matching criterion; stationary scalar ARMA signal model; sufficient conditions; time-domain nonlinear optimization; Application software; Autoregressive processes; Computer simulation; Helium; Parameter estimation; Parametric statistics; Phase estimation; Signal processing; Sufficient conditions; Time domain analysis;
  • fLanguage
    English
  • Journal_Title
    Signal Processing, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    1053-587X
  • Type

    jour

  • DOI
    10.1109/78.376841
  • Filename
    376841