• DocumentCode
    765689
  • Title

    Improved parameter estimation with noisy data for linear models using higher order statistics and inverse filter criteria

  • Author

    Tugnait, Jitendra K.

  • Author_Institution
    Dept. of Electr. Eng., Auburn Univ., AL, USA
  • Volume
    2
  • Issue
    4
  • fYear
    1995
  • fDate
    4/1/1995 12:00:00 AM
  • Firstpage
    63
  • Lastpage
    65
  • Abstract
    The problem of estimating the parameters of a non-Gaussian ARMA signal model using higher order statistics is considered. We propose and analyze a novel class of criteria involving explicit higher order whitening, where higher order cumulants of deconvolved data are exploited at a finite number of lags excluding the zero lag. In the presence of a class of measurement noise of unknown covariance/cumulant function, the proposed criteria are shown to yield strongly consistent parameter estimators unlike the Wiggins-Donoho-Shalvi-Weinstein class involving implicit higher order whitening, where higher order cumulants of deconvolved data are exploited only at zero lag.<>
  • Keywords
    autoregressive moving average processes; deconvolution; filtering theory; higher order statistics; measurement; noise; parameter estimation; covariance function; cumulant function; deconvolved data; higher order cumulants; higher order statistics; higher order whitening; inverse filter; linear models; measurement noise; noisy data; non-Gaussian ARMA signal model; parameter estimation; Gaussian noise; Higher order statistics; Inverse problems; Noise measurement; Nonlinear filters; Parameter estimation; Parametric statistics; Polynomials; Yield estimation;
  • fLanguage
    English
  • Journal_Title
    Signal Processing Letters, IEEE
  • Publisher
    ieee
  • ISSN
    1070-9908
  • Type

    jour

  • DOI
    10.1109/97.376911
  • Filename
    376911