DocumentCode
765689
Title
Improved parameter estimation with noisy data for linear models using higher order statistics and inverse filter criteria
Author
Tugnait, Jitendra K.
Author_Institution
Dept. of Electr. Eng., Auburn Univ., AL, USA
Volume
2
Issue
4
fYear
1995
fDate
4/1/1995 12:00:00 AM
Firstpage
63
Lastpage
65
Abstract
The problem of estimating the parameters of a non-Gaussian ARMA signal model using higher order statistics is considered. We propose and analyze a novel class of criteria involving explicit higher order whitening, where higher order cumulants of deconvolved data are exploited at a finite number of lags excluding the zero lag. In the presence of a class of measurement noise of unknown covariance/cumulant function, the proposed criteria are shown to yield strongly consistent parameter estimators unlike the Wiggins-Donoho-Shalvi-Weinstein class involving implicit higher order whitening, where higher order cumulants of deconvolved data are exploited only at zero lag.<>
Keywords
autoregressive moving average processes; deconvolution; filtering theory; higher order statistics; measurement; noise; parameter estimation; covariance function; cumulant function; deconvolved data; higher order cumulants; higher order statistics; higher order whitening; inverse filter; linear models; measurement noise; noisy data; non-Gaussian ARMA signal model; parameter estimation; Gaussian noise; Higher order statistics; Inverse problems; Noise measurement; Nonlinear filters; Parameter estimation; Parametric statistics; Polynomials; Yield estimation;
fLanguage
English
Journal_Title
Signal Processing Letters, IEEE
Publisher
ieee
ISSN
1070-9908
Type
jour
DOI
10.1109/97.376911
Filename
376911
Link To Document