• DocumentCode
    765788
  • Title

    Simulation of human respiration in fMRI with a mechanical model

  • Author

    Brosch, Jared R. ; Talavage, Thomas M. ; Ulmer, John L. ; Nyenhuis, John A.

  • Author_Institution
    Dept. of Biomed. Eng., Purdue Univ., West Lafayette, IN, USA
  • Volume
    49
  • Issue
    7
  • fYear
    2002
  • fDate
    7/1/2002 12:00:00 AM
  • Firstpage
    700
  • Lastpage
    707
  • Abstract
    Obtaining functional magnetic resonance images of the brain is a challenging measurement process having a low characteristic signal-to-noise ratio. Images contain various forms of noise, including those induced by physiologic processes. One of the prevalent disturbances is hypothesized to result from susceptibility fluctuations caused by abdominal volume changes during respiration. To test this hypothesis and characterize the contribution of respiration noise to both magnitude and phase images, a mechanical model of a respiring human was constructed. The model was tested by comparing data from the model with that of a resting human. Power spectrum analyses show that the model induces both phase and magnitude disturbances similar to those in the human. The disturbances are directly related to the frequency of the respiration, with the noise most prevalent in the phase images. Though magnitude image noise is hard to identify in the human, the manikin demonstrates the presence of this disturbance. The construction of the manikin rules out motion as the primary source of the observed fluctuations and variation of the electrical properties of the manikin also indicates that signal fluctuations are not primarily due to eddy currents. Therefore, the changes are most probably induced by bulk susceptibility changes correlating with respiration.
  • Keywords
    biomedical MRI; brain; noise; physiological models; pneumodynamics; abdominal volume changes; brain; bulk susceptibility changes; eddy currents; electrical properties; fMRI; functional magnetic resonance images; human respiration simulation; low characteristic signal-to-noise ratio; magnitude disturbances; magnitude images; manikin; mechanical model; phase disturbances; phase images; physiologic processes; power spectrum analyses; respiration frequency; respiration noise; resting human; signal fluctuations; susceptibility fluctuations; Abdomen; Brain modeling; Fluctuations; Frequency; Humans; Magnetic noise; Magnetic resonance; Phase noise; Signal to noise ratio; Testing; Artifacts; Ascorbic Acid; Brain; Ferrous Compounds; Fourier Analysis; Humans; Magnetic Resonance Imaging; Male; Movement; Phantoms, Imaging; Respiratory Mechanics; Sensitivity and Specificity; Signal Processing, Computer-Assisted;
  • fLanguage
    English
  • Journal_Title
    Biomedical Engineering, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0018-9294
  • Type

    jour

  • DOI
    10.1109/TBME.2002.1010854
  • Filename
    1010854