DocumentCode :
768231
Title :
Improved generalization of MCE parameter estimation with application to speech recognition
Author :
Purnell, Darryl William ; Botha, Elizabeth C.
Author_Institution :
Dept. of Electr., Electron. & Comput. Eng., Pretoria Univ., South Africa
Volume :
10
Issue :
4
fYear :
2002
fDate :
5/1/2002 12:00:00 AM
Firstpage :
232
Lastpage :
239
Abstract :
Discriminative training of hidden Markov models (HMMs) using minimum classification error training (MCE) has been shown to work well for certain speech recognition applications. MCE is, however, somewhat prone to overspecialization. This study investigates various techniques which improve performance and generalization of the MCE algorithm. Improvements of up to 10% in relative error rate on the test set are achieved for the TIMIT dataset
Keywords :
error analysis; hidden Markov models; parameter estimation; signal classification; speech recognition; MCE algorithm generalization; MCE parameter estimation; TIMIT dataset; discriminative training; error rate; hidden Markov models; minimum classification error; speech recognition; Acoustic testing; Automatic speech recognition; Error analysis; Error correction; Hidden Markov models; Multi-layer neural network; Neural networks; Parameter estimation; Speech recognition; Viterbi algorithm;
fLanguage :
English
Journal_Title :
Speech and Audio Processing, IEEE Transactions on
Publisher :
ieee
ISSN :
1063-6676
Type :
jour
DOI :
10.1109/TSA.2002.1011536
Filename :
1011536
Link To Document :
بازگشت