DocumentCode :
768327
Title :
Asymptotic maximum likelihood estimator performance for chaotic signals in noise
Author :
Kay, Steven
Author_Institution :
Dept. of Electr. Eng., Rhode Island Univ., Kingston, RI, USA
Volume :
43
Issue :
4
fYear :
1995
fDate :
4/1/1995 12:00:00 AM
Firstpage :
1009
Lastpage :
1012
Abstract :
The performance of the maximum likelihood estimator for a 1-D chaotic signal in white Gaussian noise is derived. It is found that the estimator is inconsistent and therefore the usual asymptotic distribution (large data record length) is invalid. However, for high signal-to-noise ratios (SNRs), the maximum likelihood estimator is asymptotically unbiased and attains the Cramer-Rao lower bound.<>
Keywords :
Gaussian noise; chaos; maximum likelihood estimation; signal processing; white noise; Cramer-Rao lower bound; asymptotic distribution; asymptotic maximum likelihood estimator performance; chaos; high signal-to-noise ratios; white Gaussian noise;
fLanguage :
English
Journal_Title :
Signal Processing, IEEE Transactions on
Publisher :
ieee
ISSN :
1053-587X
Type :
jour
DOI :
10.1109/78.378033
Filename :
378033
Link To Document :
بازگشت