DocumentCode
76963
Title
SEG-SSC: A Framework Based on Synthetic Examples Generation for Self-Labeled Semi-Supervised Classification
Author
Triguero, Isaac ; Garcia, Salvador ; Herrera, Francisco
Author_Institution
Dept. of Comput. Sci. & Artificial Intell., Univ. of Granada, Granada, Spain
Volume
45
Issue
4
fYear
2015
fDate
Apr-15
Firstpage
622
Lastpage
634
Abstract
Self-labeled techniques are semi-supervised classification methods that address the shortage of labeled examples via a self-learning process based on supervised models. They progressively classify unlabeled data and use them to modify the hypothesis learned from labeled samples. Most relevant proposals are currently inspired by boosting schemes to iteratively enlarge the labeled set. Despite their effectiveness, these methods are constrained by the number of labeled examples and their distribution, which in many cases is sparse and scattered. The aim of this paper is to design a framework, named synthetic examples generation for self-labeled semi-supervised classification, to improve the classification performance of any given self-labeled method by using synthetic labeled data. These are generated via an oversampling technique and a positioning adjustment model that use both labeled and unlabeled examples as reference. Next, these examples are incorporated in the main stages of the self-labeling process. The principal aspects of the proposed framework are: 1) introducing diversity to the multiple classifiers used by using more (new) labeled data; 2) fulfilling labeled data distribution with the aid of unlabeled data; and 3) being applicable to any kind of self-labeled method. In our empirical studies, we have applied this scheme to four recent self-labeled methods, testing their capabilities with a large number of data sets. We show that this framework significantly improves the classification capabilities of self-labeled techniques.
Keywords
learning (artificial intelligence); pattern classification; sampling methods; SEG-SSC; classification performance; labeled data distribution; labeled samples; oversampling technique; positioning adjustment model; self-labeled method; self-labeled semisupervised classification; self-learning process; supervised models; synthetic examples generation; synthetic labeled data; Cybernetics; Manifolds; Prediction algorithms; Prototypes; Reliability; Standards; Training; Co-training; self-labeled methods; semi- supervised classification; semi-supervised classification; synthetic examples;
fLanguage
English
Journal_Title
Cybernetics, IEEE Transactions on
Publisher
ieee
ISSN
2168-2267
Type
jour
DOI
10.1109/TCYB.2014.2332003
Filename
6847198
Link To Document