Title :
Clocked molecular quantum-dot cellular automata
Author :
Lent, Craig S. ; Isaksen, Beth
Author_Institution :
Dept. of Electr. Eng., Univ. of Notre Dame, IN, USA
Abstract :
Quantum-dot cellular automata (QCA) is an approach to computing that eliminates the need for current switches by representing binary information as the configuration of charge among quantum dots. For molecular QCA, redox sites of molecules serve as the quantum dots. The Coulomb interaction between neighboring molecules provides device-device coupling. By introducing clocked control of the QCA cell, power gain, reduced power dissipation, and computational pipelining can be achieved. We present an ab initio analysis of a simple molecular system, which acts as a clocked molecular QCA cell. The intrinsic bistability of the molecular charge configuration results in dipole or quadrupole fields that couple strongly to the state of neighboring molecules. We show how clocked control of the molecular QCA can be accomplished with a local electric field.
Keywords :
cellular automata; molecular electronics; nanoelectronics; pipeline processing; quantum computing; quantum dots; Coulomb interaction; binary information; bistability; clocked control; clocked molecular QCA cell; computational pipelining; device-device coupling; dipole fields; local electric field; molecular charge configuration; nanotechnology; power dissipation reduction; power gain; quadrupole fields; quantum-dot cellular automata; redox sites; Clocks; Electrons; Power dissipation; Quantization; Quantum cellular automata; Quantum computing; Quantum dots; Stationary state; Switches; Wire;
Journal_Title :
Electron Devices, IEEE Transactions on
DOI :
10.1109/TED.2003.815857