DocumentCode
7707
Title
Technology Scaling Comparison of Flip-Flop Heavy-Ion Single-Event Upset Cross Sections
Author
Gaspard, N.J. ; Jagannathan, Sarangapani ; Diggins, Zachary J. ; King, Michael P. ; Wen, S.-J. ; Wong, Rita ; Loveless, T.D. ; Lilja, K. ; Bounasser, M. ; Reece, T. ; Witulski, A.F. ; Holman, W.T. ; Bhuva, B.L. ; Massengill, Lloyd W.
Author_Institution
Dept. of Electr. Eng. & Comput. Sci., Vanderbilt Univ., Nashville, TN, USA
Volume
60
Issue
6
fYear
2013
fDate
Dec. 2013
Firstpage
4368
Lastpage
4373
Abstract
Heavy-ion experimental results from flip-flops in 180-nm to 28-nm bulk technologies are used to quantify single-event upset trends. The results show that as technologies scale, D flip-flop single-event upset cross sections decrease while redundant storage node flip-flops cross sections may stay the same or increase depending on the layout spacing of storage nodes. As technology feature sizes become smaller, D flip-flop single-event upset cross sections approach redundant storage node hardened flip-flops cross sections for particles with high linear energy transfer values. Experimental results show that redundant storage node designs provide > 100X improvement in single-event upset cross section over DFF for ion linear energy transfer values below 10 MeV-cm2/mg down to 28-nm feature sizes.
Keywords
flip-flops; radiation hardening (electronics); D-flip-flop heavy-ion single-event upset cross section approach; ion linear energy transfer values; layout spacing; redundant storage node flip-flop cross sections; size 180 nm to 28 nm; technology feature sizes; technology scaling; Flip-flops; Latches; Robustness; Single event upsets; Charge sharing; D flip-flop; hardened flip-flop; multiple-node charge collection; single-event upset;
fLanguage
English
Journal_Title
Nuclear Science, IEEE Transactions on
Publisher
ieee
ISSN
0018-9499
Type
jour
DOI
10.1109/TNS.2013.2289745
Filename
6678317
Link To Document