Title :
An axiomatization of partition entropy
Author :
Simovici, Dan A. ; Jaroszewicz, Szymon
Author_Institution :
Dept. of Comput. Sci., Massachusetts Univ., Boston, MA, USA
fDate :
7/1/2002 12:00:00 AM
Abstract :
The aim of this article is to present an axiomatization of a generalization of Shannon´s entropy starting from partitions of finite sets. The proposed axiomatization defines a family of entropies depending on a real positive parameter that contains as a special case the Havrda-Charvat (1967) entropy, and thus, provides axiomatizations for the Shannon entropy, the Gini index, and for other types of entropy used in classification and data mining
Keywords :
data mining; entropy; signal classification; Gini index; Havrda-Charvat entropy; axiomatization; classification; data mining; finite set partitions; generalised Shannon´s entropy; partition entropy; real positive parameter; Binary codes; Circuits; Data mining; Entropy; History; Information theory; Notice of Violation; Power dissipation; Probability distribution; Upper bound;
Journal_Title :
Information Theory, IEEE Transactions on
DOI :
10.1109/TIT.2002.1013159