DocumentCode :
77316
Title :
Limit Theorems in Hidden Markov Models
Author :
Guangyue Han
Author_Institution :
Univ. of Hong Kong, Hong Kong, China
Volume :
59
Issue :
3
fYear :
2013
fDate :
Mar-13
Firstpage :
1311
Lastpage :
1328
Abstract :
In this paper, under mild assumptions, we derive a law of large numbers, a central limit theorem with an error estimate, an almost sure invariance principle, and a variant of the Chernoff bound in finite-state hidden Markov models. These limit theorems are of interest in certain areas of information theory and statistics. Particularly, we apply the limit theorems to derive the rate of convergence of the maximum likelihood estimator in finite-state hidden Markov models.
Keywords :
entropy; hidden Markov models; maximum likelihood estimation; Chernoff bound; central limit theorem; entropy; error estimate; finite-state hidden Markov models; information theory; maximum likelihood estimator; Context; Convergence; Hidden Markov models; Information theory; Maximum likelihood estimation; Probabilistic logic; Random variables; Entropy; Shannon-McMillan-Breiman theorem; hidden Markov models; limit theorem;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/TIT.2012.2226701
Filename :
6362212
Link To Document :
بازگشت