DocumentCode :
77361
Title :
A Fault-Tolerant Two-Motor Drive With FCS-MP-Based Flux and Torque Control
Author :
Chee-Shen Lim ; Levi, E. ; Jones, Maxwell ; Abd Rahim, N. ; Wooi-Ping Hew
Author_Institution :
Wisma R&D, Univ. of Malaya, Kuala Lumpur, Malaysia
Volume :
61
Issue :
12
fYear :
2014
fDate :
Dec. 2014
Firstpage :
6603
Lastpage :
6614
Abstract :
Independently controlled multimotor drives are typically realized by using a common dc link and independent sets of three-phase inverters and motors. In the case of an open-circuit fault in an inverter leg, one motor becomes single phase. To enable continued controllable operation by eliminating single phasing, the supply for the motor phase with the faulted inverter leg can be paralleled to a healthy leg of another inverter using hardware reconfiguration. Hence, the two motors are now supplied from a five-leg inverter, which has inherent voltage and current limitations. Theoretically, violating the voltage limit leads to inverter overmodulation and large torque oscillations. It is shown here that the finite-control-set model predictive control, designed to control the machines´ stator flux and torque, can consider the inherent voltage limit dynamically in the control loop. Apart from preserving the independent control of the two machines, the additional constraint consideration significantly widens the operating speed ranges of the machines. In particular, it is shown that, whenever the voltage limit is entered, the controller reduces the stator flux level automatically, without requiring external flux reference change. The obtained performance is illustrated using experimental results and is also compared to the conventional two-motor field-oriented control scheme. The control concept is thus fully experimentally verified.
Keywords :
angular velocity control; control system synthesis; fault tolerance; invertors; level control; machine vector control; motor drives; predictive control; stators; torque control; voltage control; FCS-MP-based stator flux control; common DC link; finite-control-set model predictive control; five-leg inverter leg; independently controlled multimotor drive; open-circuit fault-tolerant two-motor drive; overmodulation; single phasing elimination; three-phase inverter; torque control; torque oscillation; two-motor field-oriented control scheme; Fault tolerant systems; Inverters; Predictive control; Pulse width modulation; Torque control; Field weakening; flux and torque control; model predictive control; open-circuit fault; two-motor drive;
fLanguage :
English
Journal_Title :
Industrial Electronics, IEEE Transactions on
Publisher :
ieee
ISSN :
0278-0046
Type :
jour
DOI :
10.1109/TIE.2014.2317135
Filename :
6797932
Link To Document :
بازگشت