DocumentCode
774847
Title
Linewidth and Chirp of MEMS-VCSELs
Author
Halbritter, H. ; Sydlo, C. ; Kögel, B. ; Riemenschneider, F. ; Hartnagel, H.L. ; Meissner, P.
Author_Institution
Inst. fur Hochfrequenztechnik, Darmstadt Univ. of Technol.
Volume
18
Issue
20
fYear
2006
Firstpage
2180
Lastpage
2182
Abstract
This letter analyzes the influence of micromachined Bragg mirrors within active Fabry-Perot cavities on basic laser characteristics, like linewidth and chirp. The impact of thermal noise of the micromechanic structure is discussed and its influence on the linewidth of a microelectromechanical system (MEMS)-tunable vertical-cavity surface-emitting laser (VCSEL) is verified in an experiment. For the first time, we demonstrate for a MEMS-VCSEL a record low average linewidth of 210 MHz and extract an intrinsic linewidth of below 30 MHz. The second issue deals with the influence of microforces like radiation pressure, radiometric pressure, and length extension of the Bragg-mirror structure due to absorption on the chirp behavior of a MEMS-laser. For the first time, these effects and their influence on the VCSEL dynamics are modelled and discussed in detail. Further, the measured chirp characteristics are analyzed and compared with our modelling to quantify the influence of above effects on the device characteristics
Keywords
chirp modulation; laser cavity resonators; laser mirrors; micromechanical devices; micromirrors; radiation pressure; radiometry; semiconductor lasers; surface emitting lasers; thermal noise; Bragg mirrors; Fabry-Perot cavity; MEMS-VCSEL; chirp; laser tuning; linewidth; microelectromechanical system; micromachining; radiation pressure; radiometric pressure; thermal noise; vertical-cavity surface-emitting laser; Biomembranes; Chirp; Fluctuations; Laser modes; Laser noise; Laser tuning; Microelectromechanical systems; Mirrors; Surface emitting lasers; Vertical cavity surface emitting lasers; Chirp; linewidth; microelectromechanical system (MEMS); micromechanics; radiation pressure; radiometric pressure; thermal noise; tunable laser; vertical-cavity surface-emitting laser (VCSEL);
fLanguage
English
Journal_Title
Photonics Technology Letters, IEEE
Publisher
ieee
ISSN
1041-1135
Type
jour
DOI
10.1109/LPT.2006.884239
Filename
1705524
Link To Document