• DocumentCode
    77661
  • Title

    Utilizing Versatile Transmission Waveforms to Mitigate Pulse-Compression Range Sidelobes With the HIWRAP Radar

  • Author

    McLinden, Matthew L. ; Carswell, James ; Li, Luoqing ; Heymsfield, Gerald ; Emory, Amber ; Cervantes, Jaime I. ; Lin Tian

  • Author_Institution
    NASA/Goddard Space Flight Center, Greenbelt, MD, USA
  • Volume
    10
  • Issue
    6
  • fYear
    2013
  • fDate
    Nov. 2013
  • Firstpage
    1365
  • Lastpage
    1368
  • Abstract
    The NASA Goddard Space Flight Center (GSFC) High-altitude Imaging Wind and Rain Airborne Profiler (HIWRAP) is a solid-state dual frequency Doppler radar funded by the NASA Instrument Incubator Program. It uses direct-digital-synthesizer devices to generate versatile waveforms including conventional pulses and linear frequency modulation (LFM) chirps. This letter describes a waveform used by the GSFC and the Remote Sensing Solutions to address the critical limitations of range sidelobes and blind ranges in airborne pulse-compression radar. By utilizing a frequency diversity waveform consisting of two pulses and an LFM chirp at each transmit cycle, this system provides the improved sensitivity and range resolution benefits of pulse compression on targets within the middle and high altitudes while maintaining conventional pulsed data near the radar and the surface. The data obtained by the HIWRAP during the NASA Midlatitude Continental Convective Clouds Experiment using this waveform scheme are presented.
  • Keywords
    Doppler radar; atmospheric measuring apparatus; atmospheric waves; clouds; convection; frequency modulation; pulse compression; rain; remote sensing by radar; wind; GSFC; HIWRAP Radar; LFM chirp; NASA Goddard Space Flight Center; NASA Instrument Incubator Program; NASA midlatitude continental convective cloud experiment; airborne pulse-compression radar; blind ranges; conventional pulsed data; conventional pulses; cycle transmission; direct-digital-synthesizer devices; frequency diversity waveform; high altitude; high-altitude imaging wind and rain airborne profiler; linear frequency modulation; middle altitude; pulse-compression range sidelobe mitigation; range sidelobe limitations; remote sensing solutions; solid-state dual frequency Doppler radar; target pulse compression; versatile transmission waveforms; versatile waveform generation; waveform scheme; Chirp; Doppler radar; NASA; Radar imaging; Sensitivity; Spaceborne radar; Pulse-compression methods; pulse-compression radar; radar; remote sensing;
  • fLanguage
    English
  • Journal_Title
    Geoscience and Remote Sensing Letters, IEEE
  • Publisher
    ieee
  • ISSN
    1545-598X
  • Type

    jour

  • DOI
    10.1109/LGRS.2013.2241729
  • Filename
    6472757