DocumentCode :
779358
Title :
Optimal dimensionality reduction of sensor data in multisensor estimation fusion
Author :
Zhu, Yunmin ; Song, Enbin ; Zhou, Jie ; You, Zhisheng
Author_Institution :
Dept. of Math., Sichuan Univ., China
Volume :
53
Issue :
5
fYear :
2005
fDate :
5/1/2005 12:00:00 AM
Firstpage :
1631
Lastpage :
1639
Abstract :
When there exists the limitation of communication bandwidth between sensors and a fusion center, one needs to optimally precompress sensor outputs-sensor observations or estimates before the sensors´ transmission in order to obtain a constrained optimal estimation at the fusion center in terms of the linear minimum error variance criterion, or when an allowed performance loss constraint exists, one needs to design the minimum dimension of sensor data. This paper will answer the above questions by using the matrix decomposition, pseudo-inverse, and eigenvalue techniques.
Keywords :
eigenvalues and eigenfunctions; matrix decomposition; sensor fusion; communication bandwidth; eigenvalue technique; linear minimum error variance criterion; matrix decomposition; minimum dimension; multisensor estimation fusion; optimal dimensionality reduction; optimally precompress sensor outputs-sensor observation; pseudo-inverse technique; sensor data; Bandwidth; Computer science; Eigenvalues and eigenfunctions; Mathematics; Matrix decomposition; Performance loss; Propagation losses; Sensor fusion; Sensor systems; System performance; Linear compression; minimum variance estimation; multisensor estimation fusion;
fLanguage :
English
Journal_Title :
Signal Processing, IEEE Transactions on
Publisher :
ieee
ISSN :
1053-587X
Type :
jour
DOI :
10.1109/TSP.2005.845429
Filename :
1420805
Link To Document :
بازگشت