• DocumentCode
    779812
  • Title

    Identification of 2-D noncausal Gauss-Markov random fields

  • Author

    Cusani, R. ; Baccarelli, E.

  • Author_Institution
    INFOCOM Dept., Rome Univ., Italy
  • Volume
    44
  • Issue
    3
  • fYear
    1996
  • fDate
    3/1/1996 12:00:00 AM
  • Firstpage
    759
  • Lastpage
    764
  • Abstract
    Parameter identification of multidimensional noncausal Markov random fields is an important paradigm in multidimensional signal processing and modeling, and the solutions to this problem are employed in many areas of image processing. An original procedure for estimating the model parameters of discrete-index 2-D noncausal Gauss-Markov random fields (GMRFs) from noisy observations is proposed, valid for both finite and infinite lattices and for any kind of boundary conditions. Starting from a suitable “local” representation of the GMRF and taking into account the symmetry property of so-called field potentials, a linear equation set relating the model parameters to the 2-D autocorrelation function (known or estimated) of the observed field is derived. Its solution gives the parameter estimates of the GMRF together with the estimate of the (possibly unknown) variance of the observation noise
  • Keywords
    Gaussian processes; Markov processes; correlation methods; image processing; noise; parameter estimation; random processes; signal processing; 2D autocorrelation function; 2D noncausal Gauss-Markov random fields; GMRF; boundary conditions; discrete index 2D noncausal fields; field potentials; finite lattices; identification; image processing; infinite lattices; linear equation; local representation; model parameter estimation; multidimensional noncausal Markov random fields; multidimensional signal modeling; multidimensional signal processing; noisy observations; observation noise variance; symmetry property; Array signal processing; Australia; Finite impulse response filter; Gaussian processes; Lattices; Linear systems; Maximum likelihood estimation; Multidimensional signal processing; Parameter estimation; Sensor arrays;
  • fLanguage
    English
  • Journal_Title
    Signal Processing, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    1053-587X
  • Type

    jour

  • DOI
    10.1109/78.489058
  • Filename
    489058