• DocumentCode
    780324
  • Title

    Distributed Antennas for Indoor Radio Communications

  • Author

    Saleh, Adel A M ; Rustako, A.J., Jr. ; Roman, R.S.

  • Author_Institution
    AT&T Bell Labs.,Holmdel, NJ
  • Volume
    35
  • Issue
    12
  • fYear
    1987
  • fDate
    12/1/1987 12:00:00 AM
  • Firstpage
    1245
  • Lastpage
    1251
  • Abstract
    The idea of implementing an indoor radio communications system serving an entire building from a single central antenna appears to be an attractive proposition. However, based on various indoor propagation measurements of the signal attenuation and the multipath delay spread, such a centralized approach appears to be limited to small buildings and to narrow-band FDMA-type systems with limited reliability and flexibility. In this paper, we present the results of indoor radio propagation measurements of two signal distribution approaches that improve the picture dramatically. In the first, the building is divided into many small cells, each served from an antenna located in its own center, and with adjacent cells operating in different frequency bands. In the second approach, the building is divided into one or more large cells, each served from a distributed antenna system or a "leaky feeder" that winds its way through the hallways. This approach eliminates the frequency cell handoff problem that is bound to exist in the first approach, while still preserving the dramatic reductions in multipath delay spread and signal attenuation compared to a centralized system. For example, the measurements show that, with either approach, the signal attenuation can be reduced by as much as a few tens of decibels and the rms delay spread becomes limited to 20 to 50 us, even in large buildings. This can make possible the implementation of sophisticated broad-band TDMA-type systems that are flexible, robust, and virtually building-independent.
  • Keywords
    Indoor radio communications; Multipath channels; Radio communication, indoor; TDMA (time-division multiple-access); Time-division multiple-access; Antenna measurements; Attenuation measurement; Costs; Delay; Frequency; Indoor radio communication; Multiaccess communication; Protocols; Time division multiple access; Wiring;
  • fLanguage
    English
  • Journal_Title
    Communications, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0090-6778
  • Type

    jour

  • DOI
    10.1109/TCOM.1987.1096716
  • Filename
    1096716